mBrace3D, Refined Analyses for Curved Steel Bridges

Manual for Refined Analysis in Bridge Design and Evaluation

May 2019

U.S. Department of Transportation Federal Highway Administration

Sponsored by Federal Highway Administration Office of Infrastructure FHWA-HIF-18-046 Reference document for FEA applied to bridges

- Different types of analyses:
 Line girder analysis (1D)
 Plate on eccentric beam analysis (2D)
 Finite element analysis (3D)
- Detailed examples -> Benchmark problems

https://www.fhwa.dot.gov/bridge/pubs/hif18046.pdf

Why use a Refined Analysis?

• "Capturing behavior not adequately accounted for by approximate methods and/or outside the limits of the Specifications. Even within the limits of applicability, approximate methods can give erroneous indications of a <u>structure's true behavior</u>.

• Obtaining <u>more accurate</u>, and <u>less conservative</u>, demands for existing structures, especially when approximate methods result in conservative demands which in turn result in extensive repair or replacement of structures."

Why use a Refined Analysis?

- "Improved <u>structural safety</u> by more rigorous assessment of limit states
- Increased **<u>economy</u>** by going beyond use of approximate, conservative design formulae
- Increased safety and economy by accurate modeling of system or local behavior"

Why use a Refined Analysis?

"This Manual promotes a <u>fundamental change in the practice of bridge engineering</u> and attempts to move our industry past the use of simplistic design specifications to achieve more optimal solutions.

(...)

This Manual is seen as an essential component to <u>defining proper criteria for software</u> <u>vendors to follow</u> and for engineers to demand from their tools."

Further References

G13.1 Guidelines for Steel Girder Bridge Analysis

American Association of State Highway Transportation Officials National Steel Bridge Alliance AASHTO/NSBA Steel Bridge Collaboration AASHTO/NSBA Steel Bridge Collaboration – G 13.1 Guidelines for Steel Girder Bridge Analysis, 2nd Edition, 2014

D. Coletti et al.

Further References

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

NCHRP REPORT 725

Guidelines for Analysis Methods and Construction Engineering of Curved and Skewed Steel Girder Bridges

Donald W. White GEORGIA INSTITUTE OF TECHNOLOGY Atlanta, GA
Domenic Coletti HDR ENGINERRING, INC. Raleigh, NC.
Brandon W. Chavel HDR Engineering, Inc. Chicago, IL
Andres Sanchez HDR ENGINEERING, INC. Pittsburgh, PA
Cagri Ozgur and Juan Manuel Jimenez Chong PAUL C. RIZZO ASSOCIATES, INC. Pittsburgh, PA
Roberto T. Leon Virginia Polytechnic Institute and State University Blacksburg, VA
Ronald D. Medlock and Robert A. Cisneros HIGH STREL STRUCTURES, INC. Lancaster, PA
Theodore V. Galambos UNIVERSITY OF MINNESOTA Minneapolis, MN
John M. Yadlosky HDR Excitority, Inc. Pittsburgh, PA
Walter J. Gatti TENSOR ENGINEERING Indian Harbor Beach, FL
Gary T. Kowatch THE MARKOSKY ENGINEERING GROUP Youngwood, PA

Subscriber Categories Bridges and Other Structures • Highways

Research sponsored by the American Association of State Highway and Transportation Officials in cooperation with the Federal Highway Administration

TRANSPORTATION RESEARCH BOARD

WASHINGTON, D.C. 2012 WWW.TRB.org NCHRP Report 725 – Guidelines for Analysis Methods and Construction Engineering of Curved and Skewed Steel Girder Bridges, 2012

D. White, D. Coletti et al.

Arequa Gulch Bridge, Cripple Creek, CO (2001)

Straight plate girder bridge. 1,212 ft long, 266 ft main span, \$6 million (AISC)

Arequa Gulch Bridge, Cripple Creek, CO (2001)

Straight plate girder bridge. 1,212 ft long, 266 ft main span, \$6 million (AISC)

Raccoon Creek Bridge, Pike County, KY (2006)

Curved tub girder bridge. 1,275 ft long, 380 ft main span, \$20.4 million (AISC)

Raccoon Creek Bridge, Pike County, KY (2006)

Curved tub girder bridge. 1,275 ft long, 380 ft main span, \$20.4 million (AISC)

Benefits of a Refined Analysis for Curved Steel Bridges

- Curved geometries induce a combination of bending and torsion
- <u>Stability</u> during <u>erection and deck placement</u> is often critical due to large unbraced lengths and uncertainty in loads and support conditions
- 1D line analyses and 2D grid models are often inadequate for the construction phase

Program: ABAQUS

mBrace3D – "Refined" Analysis – Modeling

Plate girders (parabolic haunch)

Tub girders

mBrace3D – "Refined" Analysis – Deck Modeling

Curved plate girders with skewed supports

Deck meshing on irregular geometries

mBrace3D – "Refined" Analysis – Complex Geometries

Curved plate girders with skewed supports

Curved tubs with a point of tangency

Parametric Modeling – Quick, user-friendly, no drawing on screen

🖬 Features — 🗆 🗙								Erection sequence										-	o x
Geometry Boundary conditions									Number of steps: 8										
Multiple girde	ers		Pin	and roller supports					N	unber of d	lrop-in member	(per girder):	0						
Curved bridg	ge		Spe	cial DOF fixities	-														
Skewed sup	oports		Spri	ngs					1	1 2	3	4 5	6 7	8			1	2	3 • •
Haunched g	d girders Temporary supports								G	irder number	Sta	rt location		End location		1	Support	Support	
Bracing				Loading					P	1		0		C				number	location
Stiffeners			Poir	it loads						2		0		C			_ /	2	156.2
X-frames			Тор	flange uniform loads						3		0		2	03.6	Uniform		3	361.3
K-frames			Win	d loads						4		0		2	06.7			4	517.5
Lateral truss	es		The	rmal loads														-	017.0
Analyses				aring surface load				Back								Next			
Erection and	alysis	Ban	ier line load										_			_	_		
Eigenvalue i	buckling analysis		Discrete loads						ture										
Large displa	cement analysis	analysis D Other																	
Frequency a	analysis	rsis Splices / Transitions						Straig	ght										
Placement a	ent analysis Dapped ends D																		
Composite a	ite analysis Additional reference points							 Curve 	ed										
Direct influence analysis Support settlements								Pade	un of c		692.5	9	Pin and	roller si	upports			-	
Moving load analysis								ndui	us or c	uivaluie.	003.3			_					
Deale New									0	rientation:	Left 🌲	?			Girder number	Num	per of supp	orts	Reset
Next							_	Po	int of t	angency	No	9			1	4			
											····	L.			2	4			
			Comp	ound	curvature:	No 🌩	?		-	3	4								
Cross-sectional profiles definition																			
Basic Nast																			
Nu	umber of cross-section			Dack	IVEAL]							Uniform						
	Profile Tex flance Top flange West			Web death	Web	Bottom	Detter	- A	~	Devet	?		,	1	2 3	2 3 4			
	number	width (in)	thickness (in)	(in)	thickness (in)	flange width (in)	thickn	iess (in)		neset					Support	Support	Suppo	ort type	?
	► 1	15	1	84	0.5625	16	1							-	1	ocation (rt)	0		
	2	21	1.25	84	0.625	21	1.5							1	2	156.2	1		All circlere
	3	21	2.5	84	0.625	21	3			Uniform					2	361.3	0		uniform
	4	15	1	84	0.5625	18	1							-	4	517.5	0		
	5	18	1.25	84	0.625	19	1.5									017.0	U		
Back	6	18	2.5	84	0.625	19	3			Next			Back						Next
	-				0 5005	47	1.	1	~										

Automatic Post-Processing – Moment, Shear, Torsion, Brace Forces, etc.

mBrace3D Capabilities

Analysis Types

- First-order linear elastic analysis
- Second-order geometric nonlinear analysis (with initial imperfections)
- Eigenvalue buckling analysis
- Eigenvalue frequency analysis
- Influence analysis
- Vehicle load optimization

Loadings

- Gravity
- Wind loads
- Flange lateral loads
- Wearing surface load / Barrier line load
- Thermal loads
- Vehicle loads (any configuration)

Geometries

- Straight
- Curved
- Points of tangency
- Points of compound curvature
- Haunched girders (parabolic)

Cross-Frame Fatigue Analysis

D. Altman, B. Chavel, "Keeping Cross-Frames in Check", Modern Steel Construction, October 2020

"Strategy 1. The AASHTO *LRFD Specifications* 2020/9th Edition Commentary Article C6.6.1.2.1 recommends that the fatigue truck be positioned to determine the <u>maximum</u> <u>range of stress</u> or torque, as applicable, <u>with the truck confined to one critical transverse</u> <u>position</u> per each longitudinal position throughout the length of the bridge in the analysis."

mBrace3D – Vehicle Load Optimization for Fatigue Analysis

Left isometric view

Top view

mBrace3D – Vehicle Load Optimization for Fatigue Analysis

Maximum stress range | maximum brace force

Maximum stress range | minimum brace force

mBrace3D – Results Validation with LUSAS

mBrace3D – Closing Remarks

-> mBrace3D is a tool that conducts "REFINED" analyses in a <u>minimal amount</u> of time and with <u>limited FEA knowledge</u>, for the benefit of steel bridge <u>erectors and designers</u>

-> The software is a **cost-effective** alternative to other commercial programs