Placement analysis of a curved, variable depth, single tub girder bridge
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Case study

* Bridge located in the Museum District, Houston, TX

*  “The aesthetic concept was chosen by TXDOT as a unique “signature” bridge that serves as a gateway to the northern limit of the SH 2838

toll lane project in Houston which 1s a heavily travelled corridor in Houston with a confluence of three freeways.”

* “A steel box girder was chosen over concrete to meet the requirement of variable depth superstructure, provide a pre-fabricated option to

erect and minimize impact to traffic under the bridge and be the most cost-effective option for these bridges.”

* Spans: 105-ft. — 88-ft. — 108-ft. Box girder depth varying between 72-in. (abutments & piers) and 36-in. (mid-span)
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Constructability and aesthetics

“If the bottom flange was constant width the web slope would have to vary resulting in warping in variably cut web plates. With a variable width
bottom flange, it would allow the web slope to be constant throughout the bridge and would keep the developed elevation of web to remain

planar. This would eliminate warping otherwise developed due to variable web slope. To prevent web warping and to have a uniform visual
appeatance in elevation for the webs, it was determined that the web slope would be constant while the width of the bottom flange would vary.”
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Bridge cross-sections at bents /abutments (left) and at mid-span (right)
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Challenges

*  Opverall design challenge:

“The primary challenge was to fit all required details such as cross-frames, lateral bracing, splices, access holes, jacking stiffeners,
bearings, end diaphragms and bearing stiffeners within the room available, while satistying all the design requirements.”

e (Construction analysis chaﬂenge:

“It is vital to note that no commercially available program completely covered the interim Ioadjng/ deck pour considerations that
come into play for single steel trapezoidal boxzes.”

“Given the challenging geometry of the steel tub as described, it was difficult to capture all the aspects of the tub girder typically
used industry standard software such as MDX.”




Parametric 3D shell model

Note:

* This 3D shell is produced parametrically (there is no need to draw
anything manually and this does not require advanced FEA knowledge)

* The only input for the haunch is the depth at midspan and at the supports

* Only 3D shell models can fully capture warping of the open
trapezoidal cross-section, which is fundamental in trying to
understand the “true” bridge behavior during erection and
construction, before the concrete deck “closes” the

section and makes it torsionaﬂy stiff.



Close-up views of the parametric 3D shell model

* All plates modelled as shell elements ’

* Lateral bracing modelled as bar V4
elements
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Deck placement analysis in mBrace3D

e  mBrace3D is state-of-the-art in that it captures the partial composite action as the concrete deck hardens

e  Shear studs are modelled as link elements, whose time—varying stiffness was determined experimentaﬂy based on push—out tests
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Source: C. Topkaya, Behavior of Curved Steel Trapezoidal Box Girders During Construction, PhD Dissertation, The University of Texas at Austin, 2002
(available at: https://repositories.lib.utexas.edu/bitstream/handle /2152 /998 /topkayac026.pdf)



Geometry
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Unear elastic analyss - Displacements ep: 3 Cross frame forces. Step: 3
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Geometry

Stage 5

LUnear elastic analyss - Displacements
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View of the bridge under construction
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Source: https: / /www.houstonchronicle.com/news/houston-texas/houston/article / Damaged—pavement—shuts—down—part—of—Texas—ZS8— 161 IO760.php



https://www.houstonchronicle.com/news/houston-texas/houston/article/Damaged-pavement-shuts-down-part-of-Texas-288-16110760.php
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Final note: For the placement analysis conducted in mBrace3D and presented in eatlier slides, in absence of further publicly available
information, assumptions were made in terms of deck placement sequence (which may not reflect the actual sequence), lateral bracing

member sizes, boundary conditions, etc. This can be quickly addressed if the appropriate information is received.



